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NSC Method Introduction

Unconstrained Optimization

min f(x),

f : Rn → R is twice continuously differentiable.
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NSC Method Introduction

Classical Trust-Region Method (Powell [1])

1 qk(d) = f(xk) +∇f(xk)Td+ 1
2d

TBkd

2 dk such that ‖dk‖ ≤ δk and

qk(0)− qk(dk) ≥ κ‖∇f(xk)‖min

{
‖∇f(xk)‖
1 + ‖Bk‖

, δk

}
.

3 ρk =
f(xk)− f(xk + dk)

qk(0)− qk(dk)
4 If ρk ≥ η1, do xk+1 = xk + dk. Otherwise xk+1 = xk.

5 Choose δk+1
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NSC Method Introduction

Modified Trust-Region Method (Fan and Yuan [2])

1 qk(d) = f(xk) +∇f(xk)Td+ 1
2d

TBkd

2 dk such that ‖dk‖ ≤ δk‖∇f(xk)‖ and

qk(0)− qk(dk) ≥ κ‖∇f(xk)‖min

{
‖∇f(xk)‖
1 + ‖Bk‖

, δk‖∇f(xk)‖
}
.

3 ρk =
f(xk)− f(xk + dk)

qk(0)− qk(dk)
4 If ρk ≥ η1, do xk+1 = xk + dk. Otherwise xk+1 = xk.

5 Choose δk+1
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NSC Method Introduction

ARC Method (Cartis, Gould, and Toint [3], [4])

1 qk(d) = f(xk) +∇f(xk)Td+ 1
2d

TBkd+
1

3δk
‖d‖3

2 dk such that ‖dk‖ ≤ δ
1
2
k ‖∇f(xk)‖

1
2 and

qk(0)− qk(dk) ≥ κ‖∇f(xk)‖min

{
‖∇f(xk)‖
1 + ‖Bk‖

, δ
1
2
k ‖∇f(xk)‖

1
2

}
.

3 ρk =
f(xk)− f(xk + dk)

qk(0)− qk(dk)
4 If ρk ≥ η1, do xk+1 = xk + dk. Otherwise xk+1 = xk.

5 Choose δk+1
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NSC Method NSC Method

NSC Method

“Nonlinear stepsize control, trust regions and regularizations for

unconstrained optimization”, Toint (2013) [5]

Generalizes trust-region and regularization methods;

Provides unified convergence theory;

Suggests new methods.

Let φ, ψ, χ : Rn → R be nonnegative functions such that

min{φ(x), ψ(x), χ(x)} = 0⇒ x is a critical point
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NSC Method NSC Method

NSC Method

1 Find a model qk(d) such that qk(0) = f(xk) and

f(xk + d)− qk(d) ≤ κm‖d‖2

2 dk such that ‖dk‖ ≤ ∆(δk, χk) = δαkχ
β
k and

qk(0)− qk(dk) ≥ κψk min

{
φk

1 + ‖Bk‖
,∆(δk, χk)

}
.

3 ρk =
f(xk)− f(xk + dk)

qk(0)− qk(dk)
4 If ρk ≥ η1, do xk+1 = xk + dk. Otherwise xk+1 = xk.

5 δk+1 ∈


[γ1δk, γ2δk] ρk < η1

[γ2δk, δk] η1 ≤ ρk < η2

[δk,+∞) ρk ≥ η2
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NSC Method NSC Method

NSC Method (Particular cases)

Classical Trust-Region Method{
α = 1 and β = 0

φk = ψk = χk = ‖∇f(xk)‖
=⇒ ∆(δk, χk) = δk

Modified Trust-Region Method{
α = β = 1

φk = ψk = χk = ‖∇f(xk)‖
=⇒ ∆(δk, χk) = δk‖∇f(xk)‖

ARC Method{
α = β = 1/2

φk = ψk = χk = ‖∇f(xk)‖
=⇒ ∆(δk, χk) = δ

1
2
k ‖∇f(xk)‖

1
2
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NSC Method Complexity

How α and β affect the method?

Theorem
Suppose that

φk ≥ χk and ψk ≥ χk;

{f(xk)} is bounded below; and

‖Bk‖ ≤ κ.

Then the NSC method takes at most O(ε−2) iterations to achieve χk ≤ ε.

Nonlinear stepsize control algorithms: complexity bounds for first

and second order optimality (TR) - Grapiglia, Yuan, and Yuan ([6])
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Numerical experiments Implementation

How does α and β affect the method

Similar to what Gould, Orban, Sartenaer, et al. [7] did;

Discretize (0, 1]× [0, 1] to a 50× 51 grid;

Define algorithm for each (α, β);

Run algorithm for 58 CUTEst problems (small);

Analyze how sensitive it is;

Anything better than traditional.
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Numerical experiments Implementation

Implementation

q(d) = f(xk) +∇f(xk)Td+ 1
2d

T∇2f(xk)d

Find dk by Steihaug-Toint

ε = 10−8, maximum number of iteration 1000

η1 = 1
4 , η2 = 3

4

σ1 = 1
6 , σ2 = 4

δk+1 =


σ1δk ρk < η1

δk η1 ≤ ρk < η2

σ2δk ρk ≥ η2
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Numerical experiments Implementation

Measurement of time

Some problems have very small elapsed time (smallest: 1.32× 10−6);

Run problem many times (how many?);

First time: t0, define N =

⌈
0.1

t0

⌉
;

Run N times, get average;

Get 3 averages, keep the best.
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Numerical experiments Time and iterations

Elapsed time and number of iterations

30 problems converged for every choice of (α, β);

Number of iterations and elapsed time for these problems;

Abel Soares Siqueira Numerical Experience with a Class of Trust-Region Algorithms for Unconstrained Smooth OptimizationMay 23, 2016 12 / 30



Logo

Numerical experiments Time and iterations
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Numerical experiments Time and iterations
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Numerical experiments Individually

Time and iterations individually
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Numerical experiments Individually

time

Abel Soares Siqueira Numerical Experience with a Class of Trust-Region Algorithms for Unconstrained Smooth OptimizationMay 23, 2016 15 / 30



Logo

Numerical experiments Individually

time

Abel Soares Siqueira Numerical Experience with a Class of Trust-Region Algorithms for Unconstrained Smooth OptimizationMay 23, 2016 15 / 30



Logo

Numerical experiments Individually

iter
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Numerical experiments Individually

iter
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Numerical experiments Robustness and efficiency

Robustness and efficiency

Robustness varies between 45 and 56 problems;

Performance profile

rs,p =
cs,p

min{cs,p | s ∈ S}
s ∈ S, p ∈ P;

ρs(t) =
#{rs,p ≤ t | p ∈ P}

#P
;

ρs(1) is an efficiency measure;

ρs(+∞) is the robustness (independent of S);

Run (1, 0) vs s = (α, β), get ρs(1) and ρs(+∞).
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Numerical experiments Robustness and efficiency
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Numerical experiments Robustness and efficiency

Rob Eff

(1), (2) 94.8% 77.6%

(3), (4) 96.6% 70.7%
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Numerical experiments Performance Profiles

Performance Profiles

Number of iterations;

(1, 0) and (1, 1);

Best of iterations and elapsed time;

Best of robustness and efficiency (vs (1, 0));

Full set of 58 problems;

Used Perprof-py [8].
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Numerical experiments Performance Profiles

(1,0) vs (1,1)
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Numerical experiments Performance Profiles

Iter best vs Time best

100 100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9 101
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed
Performance Profile

Time Iter (1): 0.62-0.96
Time Iter (8): 0.50-0.02

Abel Soares Siqueira Numerical Experience with a Class of Trust-Region Algorithms for Unconstrained Smooth OptimizationMay 23, 2016 20 / 30



Logo

Numerical experiments Performance Profiles

(1,0) vs Best of iter
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Numerical experiments Performance Profiles

(1,0) vs Best of time
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Numerical experiments Performance Profiles

(1,0) vs Profile top
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Numerical experiments Performance Profiles

(1,0) vs Profile top
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Numerical experiments Performance Profiles

(1,0) vs Profile top
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Numerical experiments Performance Profiles

(1,0) vs Profile top
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Numerical experiments Best on full unconstrained set

Best on full unconstrained set

All 173 unconstrained problems without bounds.

(1,0) vs (1,1);

(1,0) vs (0.78,0.18), (1)

(1,0) vs (0.96,0.04), (3)

1 minute, 1000 iterations.
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Numerical experiments Best on full unconstrained set
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Numerical experiments Reproducibility

How reproducible are these results?

Ran the complete grid again;
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Numerical experiments Reproducibility

Run 1
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Numerical experiments Reproducibility

Run 2
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Finalizing Conclusions

Conclusions

The algorithm is indeed very dependent on (α, β);

There are appears to be superior choices to be made;

There are many better choices than (1, 0) in the small set;

The results, naturally, also depend on P.
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Finalizing Future work

Future work

Optimize other parameters for each (α, β);

Optimize (α, β)? (Too many local minima);

Sensitivity of this analysis regards the set of problems;

Best choices for specific class of problems;

Some algorithm modification that reduces sensitivity?

(non-monotone);
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Finalizing Future work

Thanks

This presentation is licensed under the Creative Commons

Attributions-ShareAlike 4.0 International License.
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