Numerical Experience with a Class of Trust-Region Algorithms for Unconstrained Smooth Optimization

XI Brazilian Workshop on Continuous Optimization

Abel Soares Sigueira

Universidade Federal do Paraná

Geovani Nunes Grapiglia Universidade Federal do Paraná

May 23, 2016

Abel Soares Sigueira

Numerical Experience with a Class of Tru

1 NSC Method

- Introduction
- NSC Method
- Complexity

Numerical experiments

- Implementation
- Time and iterations
- Individually
- Robustness and efficiency
- Performance Profiles
- Best on full unconstrained set
- Reproducibility

3 Finalizing

- Conclusions
- Future work

Unconstrained Optimization

 $\min f(x),$

 $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is twice continuously differentiable.

Classical Trust-Region Method (Powell [1])

Modified Trust-Region Method (Fan and Yuan [2])

ARC Method (Cartis, Gould, and Toint [3], [4])

NSC Method

- "Nonlinear stepsize control, trust regions and regularizations for unconstrained optimization", Toint (2013) [5]
- Generalizes trust-region and regularization methods;
- Provides unified convergence theory;
- Suggests new methods.

Let $\phi, \psi, \chi: \mathbb{R}^n \to \mathbb{R}$ be nonnegative functions such that

 $\min\{\phi(x),\psi(x),\chi(x)\}=0\Rightarrow x$ is a critical point

NSC Method

NSC Method (Particular cases)

Classical Trust-Region Method

$$\begin{cases} \alpha = 1 \text{ and } \beta = 0\\ \phi_k = \psi_k = \chi_k = \|\nabla f(x^k)\| \implies \Delta(\delta_k, \chi_k) = \delta_k \end{cases}$$

Modified Trust-Region Method

$$\begin{cases} \alpha = \beta = 1\\ \phi_k = \psi_k = \chi_k = \|\nabla f(x^k)\| \implies \Delta(\delta_k, \chi_k) = \delta_k \|\nabla f(x^k)\| \end{cases}$$

ARC Method

$$\begin{cases} \alpha = \beta = 1/2 \\ \phi_k = \psi_k = \chi_k = \|\nabla f(x^k)\| \end{cases} \Longrightarrow \Delta(\delta_k, \chi_k) = \delta_k^{\frac{1}{2}} \|\nabla f(x^k)\|^{\frac{1}{2}}$$

How α and β affect the method?

Theorem

Suppose that

- $\phi_k \ge \chi_k$ and $\psi_k \ge \chi_k$;
- $\{f(x_k)\}$ is bounded below; and
- $||B_k|| \leq \kappa$.

Then the NSC method takes at most $\mathcal{O}(\epsilon^{-2})$ iterations to achieve $\chi_k \leq \epsilon$.

Nonlinear stepsize control algorithms: complexity bounds for first and second order optimality (TR) - Grapiglia, Yuan, and Yuan ([6])

How does α and β affect the method

- Similar to what Gould, Orban, Sartenaer, et al. [7] did;
- Discretize $(0,1] \times [0,1]$ to a 50×51 grid;
- Define algorithm for each (α, β) ;
- Run algorithm for 58 CUTEst problems (small);
- Analyze how sensitive it is;
- Anything better than traditional.

Implementation

•
$$q(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d$$

- Find d^k by Steihaug-Toint
- $\epsilon = 10^{-8}$, maximum number of iteration 1000

•
$$\eta_1 = \frac{1}{4}, \ \eta_2 = \frac{3}{4}$$

• $\sigma_1 = \frac{1}{6}, \ \sigma_2 = 4$
• $\delta_{k+1} = \begin{cases} \sigma_1 \delta_k & \rho_k < \eta_1 \\ \delta_k & \eta_1 \le \rho_k < \eta_2 \\ \sigma_2 \delta_k & \rho_k \ge \eta_2 \end{cases}$

Measurement of time

- Some problems have very small elapsed time (smallest: 1.32×10^{-6});
- Run problem many times (how many?);
- First time: t_0 , define $N = \begin{bmatrix} 0.1 \\ t_0 \end{bmatrix}$;
- Run N times, get average;
- Get 3 averages, keep the best.

Elapsed time and number of iterations

- 30 problems converged for every choice of (α, β) ;
- Number of iterations and elapsed time for these problems;

Numerical Experience with a Class of Tru

Time and iterations individually

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

time

Abel Soares Siqueira

time

Abel Soares Siqueira

Numerical Experience with a Class of Tru

iter

Abel Soares Siqueira

Numerical Experience with a Class of Tru

15 / 30

Robustness and efficiency

- Robustness varies between 45 and 56 problems;
- Performance profile

•
$$r_{s,p} = \frac{c_{s,p}}{\min\{c_{s,p} \mid s \in S\}}$$
 $s \in S, p \in \mathcal{P}$;
• $\rho_s(t) = \frac{\#\{r_{s,p} \le t \mid p \in \mathcal{P}\}}{\#\mathcal{P}}$;
• $\rho_s(1)$ is an efficiency measure;

- $\rho_s(+\infty)$ is the robustness (independent of \mathcal{S});
- Run (1,0) vs $s=(\alpha,\beta),$ get $\rho_s(1)$ and $\rho_s(+\infty).$

Numerical Experience with a Class of Tru

May 23, 2016 17

17 / 30

Numerical Experience with a Class of Tru

Numerical Experience with a Class of Tru

Numerical Experience with a Class of Tru

Performance Profiles

- Number of iterations;
- (1,0) and (1,1);
- Best of iterations and elapsed time;
- Best of robustness and efficiency (vs (1,0));
- Full set of 58 problems;
- Used Perprof-py [8].

(1,0) vs (1,1)

Abel Soares Siqueira

Iter best vs Time best

Abel Soares Siqueira

(1,0) vs Best of iter

Abel Soares Siqueira

(1,0) vs Best of time

Abel Soares Siqueira

Abel Soares Siqueira

Abel Soares Siqueira

Abel Soares Siqueira

Abel Soares Siqueira

Best on full unconstrained set

- All 173 unconstrained problems without bounds.
- (1,0) vs (1,1);
- (1,0) vs (0.78,0.18), (1)
- (1,0) vs (0.96,0.04), (3)
- 1 minute, 1000 iterations.

Numerical Experience with a Class of Tru

May 23, 2016

22 / 30

How reproducible are these results?

• Ran the complete grid again;

3

Abel Soares Siqueira

Numerical Experience with a Class of Tru

Abel Soares Siqueira

Numerical Experience with a Class of Tru

Abel Soares Siqueira

Numerical Experience with a Class of Tru

Abel Soares Siqueira

Numerical Experience with a Class of Tru

Numerical Experience with a Class of Tru

May 23, 2016 24 / 30

<ロト < 2 > < 2 > < 2 > < 2 >

Abel Soares Siqueira

Numerical Experience with a Class of Tru

May 23, 2016 24 / 30

<ロト < 2 > < 2 > < 2 > < 2 >

Abel Soares Siqueira

Numerical Experience with a Class of Tru

Abel Soares Siqueira

Numerical Experience with a Class of Tru

May 23, 2016 24 / 30

<ロト < 2 > < 2 > < 2 > < 2 >

May 23, 2016 24 / 30

<≣>

Conclusions

- The algorithm is indeed very dependent on (α, β) ;
- There are appears to be superior choices to be made;
- There are many better choices than (1,0) in the small set;
- The results, naturally, also depend on \mathcal{P} .

25 / 30

Future work

- Optimize other parameters for each (α, β) ;
- Optimize (α, β) ? (Too many local minima);
- Sensitivity of this analysis regards the set of problems;
- Best choices for specific class of problems;
- Some algorithm modification that reduces sensitivity? (non-monotone);

- M. J. D. Powell, "Convergence properties of a class of minimization algorithms", in *Nonlinear Programming 2*, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, Eds., Academic Press, New York, 1975.
- J. Fan and Y. Yuan, "A new trust region algorithm with trust region radius converging to zero", in *Proceedings of the 5th International Conference on Optimization: Techniques and Applications (ICOTA 2001, Hong Kong)*, D. Li, Ed., 2001, pp. 786–794.
- C. Cartis, N. I. M. Gould, and P. L. Toint, "Adaptive cubic overestimation methods for unconstrained optimization. part I: Motivation, convergence and numerical results.", ,

——,"Adaptive cubic overestimation methods for unconstrained optimization. part II: Worst-case function - and derivative - evaluation complexity", *Mathematical Programming*, vol. 130, no. 2, pp. 295–319, 2011. DOI: 10.1007/s10107-009-0337-y.

- P. L. Toint, "Nonlinear stepsize control, trust regions and regularizations for unconstrained optimization", *Optimization Methods and Software*, vol. 28, no. 1, pp. 82–95, 2013. DOI: 10.1080/10556788.2011.610458.
- G. N. Grapiglia, J. Yuan, and Y. Yuan, "Nonlinear stepsize control algorithms: Complexity bounds for first and second order optimality", UFPR, Tech. Rep., 2016.

- N. I. M. Gould, D. Orban, A. Sartenaer, and P. L. Toint, "Sensitivity of trust-region algorithms to their parameters", 4OR, vol. 3, no. 3, pp. 227–241, 2005. DOI: 10.1007/s10288-005-0065-y.
- A. S. Siqueira, R. G. C. da Silva, and L.-R. Santos, "Perprof-py: A python package for performance profile of mathematical optimization software", *Journal of Open Research Software*, vol. 4, no. 1, e12, 2016. DOI: 10.5334/jors.81.

This presentation is licensed under the Creative Commons Attributions-ShareAlike 4.0 International License.